Skip Navigation
Skip to contents

Journal of Powder Materials : Journal of Powder Materials

OPEN ACCESS
SEARCH
Search

Author index

Page Path
HOME > Browse Articles > Author index
Search
Yang-Ki Hong 1 Article
Spark Plasma Sintering Behaviors of M-type Barium Hexaferrite Nano Powders
Im Doo Jung, Youngmoo Kim, Yang-Ki Hong, Seong Jin Park
J Powder Mater. 2014;21(4):256-259.   Published online August 1, 2014
DOI: https://doi.org/10.4150/KPMI.2014.21.4.256
  • 24 View
  • 0 Download
  • 4 Citations
AbstractAbstract PDF

A magnetic powder, M-type barium hexaferrite (BaFe12O19), was consolidated with the spark plasma sintering process. Three different holding temperatures, 850°C, 875°C and 900°C were applied to the spark plasma sintering process with the same holding times, heating rates and compaction pressure of 30 MPa. The relative density was measured simultaneously with spark plasma sintering and the convergent relative density after cooling was found to be proportional to the holding temperature. The full relative density was obtained at 900°C and the total sintering time was only 33.3 min, which was much less than the conventional furnace sintering method. The higher holding temperature also led to the higher saturation magnetic moment (σs) and the higher coercivity (Hc) in the vibrating sample magnetometer measurement. The saturation magnetic moment (σs) and the coercivity (Hc) obtained at 900°C were 56.3 emu/g and 541.5 Oe for each.

Citations

Citations to this article as recorded by  
  • A study of crystalline – texture and anisotropic properties of hexagonal BaFe12O19 sintered by in-situ magnetic-anisotropy spark plasma sintering (MASPS)
    Haetham G. Mohammed, Thar Mohammed Badri Albarody, Husam Kareem Mohsin Al-Jothery, Mazli Mustapha, N.M Sultan
    Journal of Magnetism and Magnetic Materials.2022; 553: 169268.     CrossRef
  • Process Optimization of In Situ Magnetic-Anisotropy Spark Plasma Sintering of M-Type-Based Barium Hexaferrite BaFe12O19
    Haetham G. Mohammed, Thar Mohammed Badri Albarody, Susilawati Susilawati, Soheil Gohari, Aris Doyan, Saiful Prayogi, Muhammad Roil Bilad, Reza Alebrahim, Anwar Ameen Hezam Saeed
    Materials.2021; 14(10): 2650.     CrossRef
  • Self-Consolidation and Surface Modification of Mechanical Alloyed Ti-25.0 at.% Al Powder Mixture by Using an Electro-Discharge Technique
    S.Y. Chang, H.S. Jang, Y.H. Yoon, Y.H. Kim, J.Y. Kim, Y.K. Lee, W.H. Lee
    Archives of Metallurgy and Materials.2017; 62(2): 1293.     CrossRef
  • Plastic deformation and microstructural evolution during the shock consolidation of ultrafine copper powders
    Dong-Hyun Ahn, Wooyeol Kim, Minju Kang, Lee Ju Park, Sunghak Lee, Hyoung Seop Kim
    Materials Science and Engineering: A.2015; 625: 230.     CrossRef

Journal of Powder Materials : Journal of Powder Materials